Reversed Spectral Hashing.
نویسندگان
چکیده
Hashing is emerging as a powerful tool for building highly efficient indices in large-scale search systems. In this paper, we study spectral hashing (SH), which is a classical method of unsupervised hashing. In general, SH solves for the hash codes by minimizing an objective function that tries to preserve the similarity structure of the data given. Although computationally simple, very often SH performs unsatisfactorily and lags distinctly behind the state-of-the-art methods. We observe that the inferior performance of SH is mainly due to its imperfect formulation; that is, the optimization of the minimization problem in SH actually cannot ensure that the similarity structure of the high-dimensional data is really preserved in the low-dimensional hash code space. In this paper, we, therefore, introduce reversed SH (ReSH), which is SH with its input and output interchanged. Unlike SH, which estimates the similarity structure from the given high-dimensional data, our ReSH defines the similarities between data points according to the unknown low-dimensional hash codes. Equipped with such a reversal mechanism, ReSH can seamlessly overcome the drawback of SH. More precisely, the minimization problem in our ReSH can be optimized if and only if similar data points are mapped to adjacent hash codes, and mostly important, dissimilar data points are considerably separated from each other in the code space. Finally, we solve the minimization problem in ReSH by multilayer neural networks and obtain state-of-the-art retrieval results on three benchmark data sets.
منابع مشابه
Sparse spectral hashing for content-based image retrieval
In allusion to similarity calculation difficulty caused by high maintenance of image data, this paper introduces sparse principal component algorithm to figure out embedded subspace after dimensionality reduction of image visual words on the basis of traditional spectral hashing image index method so that image high-dimension index results can be explained overall. This method is called sparse ...
متن کاملImage authentication using LBP-based perceptual image hashing
Feature extraction is a main step in all perceptual image hashing schemes in which robust features will led to better results in perceptual robustness. Simplicity, discriminative power, computational efficiency and robustness to illumination changes are counted as distinguished properties of Local Binary Pattern features. In this paper, we investigate the use of local binary patterns for percep...
متن کاملCompressed Image Hashing using Minimum Magnitude CSLBP
Image hashing allows compression, enhancement or other signal processing operations on digital images which are usually acceptable manipulations. Whereas, cryptographic hash functions are very sensitive to even single bit changes in image. Image hashing is a sum of important quality features in quantized form. In this paper, we proposed a novel image hashing algorithm for authentication which i...
متن کاملFast Approximate Nearest Neighbor Methods for Non-Euclidean Manifolds with Applications to Human Activity Analysis in Videos
Approximate Nearest Neighbor (ANN) methods such as Locality Sensitive Hashing, Semantic Hashing, and Spectral Hashing, provide computationally efficient procedures for finding objects similar to a query object in large datasets. These methods have been successfully applied to search web-scale datasets that can contain millions of images. Unfortunately, the key assumption in these procedures is ...
متن کاملComparison Of Modified Dual Ternary Indexing And Multi-Key Hashing Algorithms For Music Information Retrieval
In this work we have compared two indexing algorithms that have been used to index and retrieve Carnatic music songs. We have compared a modified algorithm of the Dual ternary indexing algorithm for music indexing and retrieval with the multi-key hashing indexing algorithm proposed by us. The modification in the dual ternary algorithm was essential to handle variable length query phrase and to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE transactions on neural networks and learning systems
دوره شماره
صفحات -
تاریخ انتشار 2017